Technology

Delivers SNPs to Genome Conformation In a Single Assa

Powered by a sequence-independent endonuclease, Omni-C™ technology represents the next-evolution in Hi-C assays delivering unbiased long-range reads and highly uniform sequence coverage.

Gain a comprehensive view of the genome from SNPs to indels, SNVs to phasing, and loops to topologically associated domains (TADs), all from a single NGS library.

ACHIEVE SHOTGUN-LIKE COVERAGE

Omni-C libraries contain uniform, shotgun-like coverage enabling downstream applications sensitive to variant detection.

Coverage distribution of different Hi-C libraries (colored lines) compared to a shotgun library (dotted line).

CAPTURE LONG-RANGE INFORMATON

Omni-C libraries offer greater long-range information compared to other Hi-C approaches. The result is greater support for chromatin 3-D interactions such as TADs and loops enabling comprehensive genome conformation mapping.

B.

Α.

Library Type	% cis <1 kbp	% cis >1 kbp	% unique molecules at 300 M read pairs
Omni-C	5 %	95%	73%
Hi-C Multi-RE	20%	80%	69%
Hi-C Single-RE	34%	66%	50%

Comparison of Omni-C libraries with multi-restriction enzyme (RE) and single-RE Hi-C libraries.

A. Proportion of long-range reads for each library type

B. Contact matrices at 4 kb resolution from 800 M total reads per library. Loops are circled with the number of raw reads supporting each contact indicated.

415 <u></u> 704	Omni-C
216() 495 ()	Multi-RE HíC
58 () 111	Single-RE HiC
DO PLXNA1 TXNRD3	MCM2

GENETIC VARIANTS AND PHASED GENOMES FROM A SINGLE LIBRARY

The shotgun-like characteristics of Omni-C data enable genotyping and haplotype phasing.

Library Type	True Positive	False Positive	False Negative	Sensitivity	Precision
Shotgun	2,696,291	9,270	6,814	99.7%	99.7%
Omni-C	2,666,339	20,081	36,766	98.6%	99.3%
RE Based Hi-C	2,387,235	33,554	315,870	88.3%	98.6%

Homozygous SNP calls sampled at 300 M read pairs.

Library Type	#Variants Phased	% Heterozygous SNPs phased	Switch Error Rate	Largest Phase Block Size	#Chromosomes phased end to end
Shotgun	2,229,492	81.44%	0.0036	28.2 kb	0
Omni-C	2,299,248	84.00%	0.0100	248.01 Mb	23
RE Based Hi-C	1,986,467	72.60%	0.0357	247.95 Mb	23

GM12878 haplotype assembly metrics using high confidence heterozygous SNPs from the Illumina Platinum Genome.

EXPLORE THE LANDSCAPE OF STRUCTURAL VARIANTS

Omni-C libraries capture large structural (>1 Mbp) variant information such as indels, inversions and chromosomal translocations.

Validated large SVs found in breast cancer cell line HCC1187 representing an inversion, a deletion and inter-chromosomal translocation

