

# Dovetail® HiChIP MNase Kit Mammalian Cells USER GUIDE

**VERSION 2.1** 

CANTATA BIO, LLC.

100 ENTERPRISE WAY

SCOTTS VALLEY, CA 95066

(831) 233 - 3780

SUPPORT@CANTATABIO.COM

# Table of Contents

| Copyright                                                                     | 3  |
|-------------------------------------------------------------------------------|----|
| Dovetail® HiChIP MNase Kit Components and Storage                             | 4  |
| Optional Add-on Modules: Components and Storage                               | 5  |
| Dovetail® Primer Module Set 1                                                 | 5  |
| Dovetail® Library Module                                                      | 5  |
| User Supplied Reagents, Consumables and Equipment                             | 6  |
| Reagents                                                                      | 6  |
| Consumables and Equipment                                                     | 6  |
| Reagents  Consumables and Equipment  Dovetail® HiChIP MNase Protocol Overview | 7  |
| Good Practices                                                                | 8  |
| Things to Consider Before You Start                                           |    |
| Stage 1: Sample Preparation (Crosslinking, Digestion and Lysis)               | 11 |
| Stage 2: Lysate QC                                                            | 16 |
| Stage 3: Chromatin Immunoprecipitation                                        | 20 |
| Stage 4: Proximity Ligation                                                   | 23 |
| Stage 5: Library Preparation                                                  |    |
| Stage 6: Ligation Capture and Amplification                                   |    |
| Sequencing & QC Analysis                                                      | 36 |
| Appendix 1: Sample Preparation for 1 x 10 <sup>6</sup> Cell Input             | 37 |
| Appendix 2: Index Primers                                                     | 40 |
|                                                                               |    |

# Copyright

Use of this product is subject to compliance with applicable Cantata Bio, LLC terms and licensing requirements described at https://dovetailgenomics.com/terms-and-conditions/.

Dovetail®, Dovetail Genomics®, and HiRise® are trademarks of Dovetail Genomics, LLC, a wholly owned subsidiary of Cantata Bio, LLC, in the U.S. and/or other countries. Illumina®, HiSeq®, MiSeq®, MiniSeq®, iSeq®, NextSeq®, NovaSeq® are registered trademarks of Illumina, Inc. Beckman Coulter®, Agencourt® and SPRIselect® are trademarks or registered trademarks of Beckman Coulter, Inc. Qubit® are trademarks or registered trademarks of Thermo Fisher Scientific.

TapeStation® and Bioanalyzer® Systems are registered trademarks of Agilent Technologies. Invitrogen® is a registered trademark of Thermo Fisher Scientific Inc.

This documentation shall be used only by Cantata Bio, LLC customers in connection with the use of the Dovetail® HiChIP MNase Kit, Dovetail® Library Module, or Dovetail® Primer Module Set 1 and shall not be used for any other purpose without the prior written consent of Cantata Bio, LLC.

This document, the associated kits and, their contents shall not be used, distributed or reproduced in whole or in part and/ or otherwise communicated or disclosed without the prior written consent of Cantata Bio, LLC.

Prior to using Dovetail® HiChIP MNase Kit, these instructions must be read and understood by properly trained personnel. FAILURE TO FOLLOW THESE INSTRUCTIONS MAY RESULT IN FAILURE OF THE PRODUCT TO PERFORM AS EXPECTED, DAMAGE TO THE PRODUCT OR CUSTOMER SAMPLES, INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY. CANTATA BIO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE DOVETAIL® HICHIP MNASE KIT. The contents of this product have been specifically designed to work together and are optimized for this protocol. Please do not make any substitutions.

The use of this product may require the buyer to obtain additional third-party intellectual property rights for certain applications. Safety Data Sheets are available at https://dovetailgenomics.com/support/sds/.

For Research Use Only. Not for use in diagnostics or diagnostic procedures. © 2025 Cantata Bio, LLC. All rights reserved.

For technical customer support, please contact support@cantatabio.com +1 (831) 233-3780

# Dovetail® HiChIP *MNase* Kit Components and Storage

Each kit contains a sufficient supply of materials to perform 8 reactions. The Dovetail® HiChIP MNase Kit comes as two boxes. Store the boxes as listed below immediately upon receipt.

Table 1. Dovetail® Chromatin Immunoprecipitation Core Box 1 (PN DG-CHIP-001)

| Components                | Size         | Cap Color | Label Color | Storage    |
|---------------------------|--------------|-----------|-------------|------------|
| 10X Wash Buffer           | 30 mL Bottle |           |             |            |
| NWB Solution              | 30 mL Bottle |           |             |            |
| Protein A/G Beads         | 0.5 mL Tube  |           |             |            |
| Crosslink Reversal Buffer | 2 mL Tube    |           |             | 2°C to 8°C |
| Streptavidin Beads        | 0.5 mL Tube  |           |             |            |
| 10X RIPA                  | 30 mL Bottle |           |             |            |
| 20% SDS                   | 0.5 mL Tube  |           |             |            |

Table 2. Dovetail® Micro-C Module Box 2 (PN DG-NUC-001)

| Components                          | Tube/ Bottle Size | Cap Color | Label Color | Storage        |
|-------------------------------------|-------------------|-----------|-------------|----------------|
| MNase Enzyme Mix                    | 0.5 mL Tube       |           |             |                |
| 10X Nuclease Digest Buffer          | 2 mL Tube         |           |             |                |
| 100 mM MgCl <sub>2</sub>            | 0.5 mL Tube       |           |             |                |
| 0.5 M EGTA                          | 0.5 mL Tube       |           |             |                |
| End Polishing Enzyme Mix            | 0.5 mL Tube       |           |             |                |
| End Polishing Buffer                | 2 mL Tube         |           |             | 00001 4000     |
| 5X Bridge Ligation Buffer           | 0.5 mL Tube       |           |             | -30°C to -10°C |
| Bridge Ligase                       | 0.5 mL Tube       |           |             |                |
| Bridge                              | 0.5 mL Tube       |           |             |                |
| Intra-Aggregate Ligation Enzyme Mix | 0.5 mL Tube       |           |             |                |
| Intra-Aggregate Ligation Buffer     | 2 mL Tube         |           |             |                |
| Proteinase K                        | 0.5 mL Tube       |           |             |                |
| HotStart PCR Ready Mix              | 0.5 mL Tube       |           |             |                |

<sup>\*</sup> If no color is specified for Label Color or Cap Color, a white or clear label/cap was used.

# Optional Add-on Modules: Components and Storage

# Dovetail® Primer Module Set 1

Table 3. Dovetail® Primer Module Set 1 (PN DG-XG-PM01)

| Components    | Storage        |
|---------------|----------------|
| DG i5 Index 1 |                |
| DG i5 Index 2 |                |
| DG i5 Index 3 |                |
| DG i5 Index 4 |                |
| DG i7 Index 1 | -30°C to -10°C |
| DG i7 Index 2 |                |
| DG i7 Index 3 |                |
| DG i7 Index 4 |                |
| DG i7 Index 5 |                |
| DG i7 Index 6 |                |

# Dovetail<sup>®</sup> Library Module

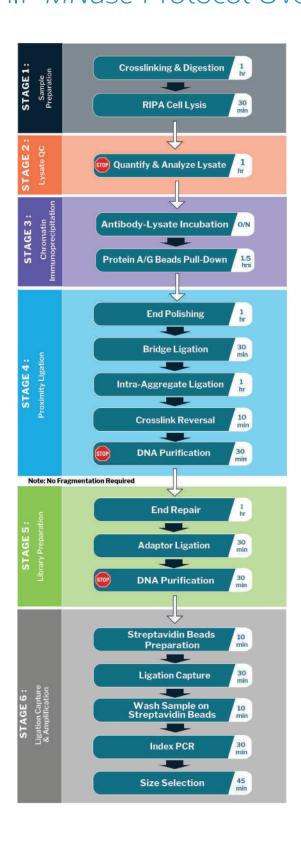
Table 4. Dovetail® Library Module (PN DG-LM01)

| Components               | Storage        |
|--------------------------|----------------|
| End Repair Enzyme Buffer |                |
| End Repair Enzyme Mix    |                |
| Ligation Buffer          | -30°C to -10°C |
| Ligation Enzyme Mix      |                |
| Stubby Adaptor           |                |

# User Supplied Reagents, Consumables and Equipment

# Reagents

#### Table 5. Reagents


| Reagents                                              | Supplier                 | Part Number  |
|-------------------------------------------------------|--------------------------|--------------|
| SPRIselect® Beads, 5 mL                               | Beckman Coulter          | B23317       |
| 37% Formaldehyde Solution                             | Sigma-Aldrich            | F8775        |
| 1X PBS, pH 7.4, 500 mL                                | Thermo Fisher Scientific | 10010023     |
| 100% EtOH                                             | Generic                  | N/A          |
| UltraPure™ DNase / RNase-Free Distilled Water, 500 mL | Thermo Fisher Scientific | 10977015     |
| DSG (Disuccinimidyl Glutarate)                        | Thermo Fisher Scientific | A35392       |
| DMSO (Dimethyl Sulfoxide, Anhydrous ≥ 99.99%)         | Sigma-Aldrich            | 276855-100ML |
| cOmplete™ Protease Inhibitor Cocktail                 | Sigma-Aldrich            | 11697498001  |
| TE pH 8.0                                             | Thermo Fisher Scientific | AM9849       |

# Consumables and Equipment

#### Table 6. Consumables and Equipment

| Consumables/Equipment                                 | Supplier                 | Part Number |
|-------------------------------------------------------|--------------------------|-------------|
| 1.5 mL Low binding microcentrifuge tubes              |                          |             |
| 0.2 mL PCR tubes                                      |                          |             |
| 5.0 mL centrifuge tubes                               |                          |             |
| Pipets and pipet tips                                 |                          |             |
| Magnetic separation rack for 0.2 mL and 1.5 mL tubes  | Carania                  |             |
| Agitating thermal mixer                               | Generic                  |             |
| Thermal cycler                                        |                          |             |
| Vortex mixer                                          |                          |             |
| Centrifuge for 0.2 mL, 1.5 mL and 5 mL tubes          |                          |             |
| Hemocytometer                                         |                          |             |
| Qubit® Fluorometer                                    | Thermo Fisher Scientific | Q33226      |
| Qubit® dsDNA HS Assay Kit                             | Thermo Fisher Scientific | Q32854      |
| Qubit® Assay Tubes                                    | Thermo Fisher Scientific | Q32856      |
| TapeStation System (Fragment Analyzer or Bioanalyzer) | Agilent                  | Various     |

# Dovetail® HiChIP MNase Protocol Overview



### Good Practices

- 1. Read the entire guide before use, including Before You Begin and the Notes.
- 2. The cell input amount will influence the efficiency of the digestion reaction. To ensure an accurate cell count, use best practices such as low-speed spins (< 500 x g) using a swinging bucket rotor when harvesting the cells, and counting prior to freezing.
- 3. To ensure efficient crosslinking, a new or recently opened solution of formaldehyde should be used. Formaldehyde solution containing white precipitates should not be used.
- 4. Keep all enzymes and master mixes on ice during setup and use. Promptly move reagents back to the indicated storage.
- 5. Fully thaw buffers, place on ice and thoroughly mix before use.
- 6. When preparing master mixes, scale the volume of each reagent as appropriate, using 10% excess volume to compensate for pipetting loss.
- 7. Always add the reagents to the master mix in the specified order as listed throughout the protocol.
- 8. When working with beads, such as Protein A/G beads, SPRIselect and Streptavidin beads, you should:
  - a. Equilibrate the beads to room temperature before use.
  - b. Thoroughly vortex the beads immediately before use and ensure they are a homogeneous slurry.
  - c. When placing the tube in the magnetic rack, always wait until the solution looks clear to allow the beads to fully separate before removing the supernatant carefully and slowly. This helps minimize bead/sample loss throughout the protocol.
  - d. Do not let the beads dry out during washing steps. Keep the beads in buffer until ready to resuspend them for the next step.
  - e. After washing the SPRIselect beads with 80% ethanol during DNA purification, do not let the beads over-dry before proceeding with elution. Over-drying the beads may result in lower recovery of DNA.

# Things to Consider Before You Start

# How many cells should you start the assay with?

The number of cells to use for the HiChIP *MNase* assay can vary significantly depending on the cell type, the cell culture, and the abundance of the protein of interest. Please refer to the table below for the recommended starting cell number for your antibody of interest.

| Antibody | Supplier        | Part<br>Number | Recommended amount<br>(ng or µL) of antibody  | Recommended<br>amount (ng) of<br>chromatin    | Recommended<br>starting cell number       |
|----------|-----------------|----------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------|
| IgG      | Cell Signaling  | 2729           | Equivalent amount as the antibody of interest | Equivalent amount as the antibody of interest | Equivalent amount as antibody of interest |
| CTCF     | Cell Signaling  | 3418           | 500 ng                                        | 1,000 - 1,500                                 | $5 \times 10^6$                           |
| H3K4ac   | Active Motif    | 39381          | 7.5 µL                                        | 1,000 - 1,500                                 | 5 x 10 <sup>6</sup>                       |
| H3K4me3  | Cell Signaling  | 9751           | 1,250 ng                                      | 1,000 - 1,500                                 | $5 \times 10^6$                           |
| H3K14ac  | Cell Signaling  | 7627           | 4,000 ng                                      | 1,000 - 1,500                                 | 5 x 10 <sup>6</sup>                       |
| H3K27ac  | Cell Signaling  | 8173           | 300 ng                                        | 1,000 - 1,500                                 | $5 \times 10^6$                           |
| H3K27ac  | Millipore Sigma | MABE647        | 200 ng                                        | 1,000 - 1,500                                 | 5 x 10 <sup>6</sup>                       |
| H3K27me3 | Cell Signaling  | 9733           | 1,250 ng                                      | 1,000 - 1,500                                 | $5 \times 10^6$                           |
| H3K36me3 | Cell Signaling  | 4909           | 1,250 ng                                      | 1,000 - 1,500                                 | 5 x 10 <sup>6</sup>                       |
| Polli    | Abcam           | ab26721        | 20,000 ng                                     | 1,000 - 1,500                                 | $5 \times 10^6$                           |
| Klf4     | Abcam           | ab106629       | 20,000 ng                                     | 10,000                                        | 10 × 10 <sup>6</sup>                      |
| Nanog    | Abcam           | ab21624        | 5,000 ng                                      | 10,000                                        | 10 × 10 <sup>6</sup>                      |
| Oct4     | Cell Signaling  | 2890           | 25 μL                                         | 10,000                                        | 10 × 10 <sup>6</sup>                      |
| Sox2     | Cell Signaling  | 23064          | 500 ng                                        | 10,000                                        | 10 × 10 <sup>6</sup>                      |

 $<sup>\</sup>blacksquare$  NOTE If you are using a non-Dovetail validated antibody, we recommend starting with 10 x 10  $^6$  cells.

#### ■ NOTES

- The first time you run the assay with a given cell type, we recommend to process a single cell aliquot through Stage 1 and Stage 2 to ensure the MNase digestion conditions are optimal for your cell type. Once the digestion conditions are optimized for your cell type, they are reproducible so you can set up multiple preparations in parallel.
- » If  $5 \times 10^6$  cells are not available, we recommend moving forward with the maximum number of cells obtainable and processing those in  $1 \times 10^6$  cell aliquots according to the  $1 \times 10^6$  cell sample preparation protocol. If you have fewer than  $1 \times 10^6$  cells, there is a high risk of not having sufficient yield to convert into a library or your library will have a high duplication rate and poor ChIP enrichment.

#### Why is it important to achieve an optimal digestion?

Dovetail HiChIP MNase assay does not require sonication prior to library preparation. The fragmentation is solely based on enzymatic digestion with MNase. Achieving an optimal digestion profile which contains  $\geq 60\%$  mononucleosomes results in a high complexity library with enriched long-range interactions. When the chromatin is under-digested (< 60% mononucleosomes), the library complexity is lower (i.e. higher duplication rate). In this case, you may need additional libraries to support the sequencing depth needed for your application.

#### How much MNase enzyme should you use to achieve an optimal digestion?

The amount of MNase Enzyme Mix to use depends on the cell type and number. The appropriate MNase amount for your sample input and type may need to be optimized. The amounts provided in the User Guide are a general starting point.

| Input                     | Enzyme Amount              |
|---------------------------|----------------------------|
| 1×10 <sup>6</sup> cells   | 0.5 μL of MNase Enzyme Mix |
| 5 x 10 <sup>6</sup> cells | 2.5 μL of MNase Enzyme Mix |
| $10 \times 10^6$ cells    | 5.0 µL of MNase Enzyme Mix |

#### What is the sequencing depth and number of libraries needed?

The sequencing depth and number of libraries depend on your antibody/protein of interest and application. If your antibody of interest is CTCF, H3K27ac, or H3K4me3 and you are looking to call loops at 5 - 10 kb resolution, we recommend sequencing a pool of two libraries to a total of ~300 M read pairs (2 x 150 bp). Please note that  $5 \times 10^6$  cells are typically sufficient for one HiChIP reaction and one library preparation.

# Stage 1: Sample Preparation (Crosslinking, Digestion and Lysis)

#### As you prepare for Stage 1, keep the following in mind:

- Sample preparation takes ~ 1.5 hours.
- Follow this sample preparation protocol if you are starting the assay with 5 x 10<sup>6</sup> cells (Option A) or 10 x 10<sup>6</sup> cells (Option B). If you are starting with 1 x 10<sup>6</sup> cells, follow Appendix 1: Sample Preparation for 1 x 10<sup>6</sup> Cell Input, page 37.

Crosslinking & Digestion

RIPA Cell Lysis

30
min

Figure 1. Stage 1: Sample Preparation

# Before You Begin

- >> The 10X Wash Buffer and 20% SDS might have precipitated in storage. Incubate these solutions at 50°C for 15 minutes or until the precipitate is no longer visible. Vortex to mix prior to use.
- Dilute 10X Wash Buffer to 1X with UltraPure™ Water. Store at room temperature. 1X Wash Buffer is stable at room temperature for 2 months. You need ~6 mL of 1X Wash Buffer per sample for the entire protocol.
- » Prepare 0.3 M DSG in DMSO (anhydrous) by dissolving 1 mg of DSG in 10.22 μL DMSO. DSG iswater-insoluble and moisture-sensitive. Prepare **immediately** before use. Do not store DSG in solution.
- >> Prepare 25X Proteinase Inhibitors by dissolving 1 tablet of cOmplete<sup>™</sup> Protease Inhibitor Cocktail in 2 mL of UltraPure<sup>™</sup> Water and place on ice. The 25X Proteinase Inhibitors solution is stable at 4°C for 2 weeks.

Prepare fresh 1X Nuclease Digest Buffer and store at room temperature. 1X Nuclease Digest Buffer is stable for 1 day at room temperature. You need 100 μL of 1X Nuclease Digest Buffer per sample.
To prepare 1X Nuclease Digest Buffer (100 μL), mix the following components:

| Reagent                                        | Volume Per<br>Reaction | 10%<br>Extra |   | #<br>Reactions |   | Final  |
|------------------------------------------------|------------------------|--------------|---|----------------|---|--------|
| UltraPure Water                                | 80 μL                  | 88 µL        | X | 8              | = | 704 µL |
| <ul> <li>10X Nuclease Digest Buffer</li> </ul> | 10 μL                  | 11 µL        | X | 8              | = | 88 µL  |
| ■ 100 mM MgCl <sub>2</sub>                     | 10 μL                  | 11 µL        | X | 8              | = | 88 µL  |
| Total                                          | 100 μL                 |              |   |                |   |        |

- >> Set the thermal mixer at 22°C, shaking at 1,250 rpm.
- Thaw 0.5 M EGTA at room temperature. Vortex to mix prior to use.

# Option A: If starting the assay with 5 x 10<sup>6</sup> cells

# 1.1 Crosslinking and Digestion

#### **□** NOTES

- $\Rightarrow$  5 x 10<sup>6</sup> cells are needed per HiChIP reaction.
- >> Pre-freezing the cells is required to get an optimal digestion profile.
- >> The cell pellet should be frozen at -80°C for at least 30 minutes (step 4). You can keep the cells frozen at -80°C for longer provided they are not subjected to freeze-thaw.
- >> All crosslinking reactions (steps 5 12) should be carried out at room temperature.

### Follow the steps below for Crosslinking and Digestion:

- 1. Harvest the cells, wash with 1X PBS and count.
- 2. Aliquot 5 x 10<sup>6</sup> cells into a 1.5 mL tube.
- 3. Spin the  $5 \times 10^6$  cell aliquot at  $500 \times g$  for 5 minutes in a swinging bucket rotor. Carefully remove and discard the supernatant.
- 4. Freeze the cell pellet by placing it at -80°C for at least 30 minutes.
- 5. Thaw your cell pellet quickly at room temperature then resuspend the pellet in 500  $\mu$ L of 1X PBS: first add 100  $\mu$ L of 1X PBS using a 100  $\mu$ L pipette. Pipet to break up clumps and then add the remaining 400  $\mu$ L. Pipet up and down to fully resuspend the pellet.
- 6. Add 5 µL of 0.3 M DSG. Pipet up and down to mix.
- 7. Rotate the tube for 10 minutes at room temperature. Cells should not settle.
- 8. Add 13.5 µL of 37% formaldehyde.
- 9. Rotate the tube for 10 minutes at room temperature. Cells should not settle.
- 10. Spin the tube at  $500 \times g$  for 5 minutes in a swinging bucket rotor. Carefully remove and discard the supernatant. Use caution, the pellet might be loose.

- 11. Wash the pellet with a total of  $500 \,\mu\text{L}$  1X Wash Buffer: first add  $100 \,\mu\text{L}$  of 1X Wash Buffer using a  $100 \,\mu\text{L}$  pipette and pipet to break up clumps then add the remaining  $400 \,\mu\text{L}$ . Pipet up and down to fully resuspend the pellet.
- 12. Spin the tube at 500 x g for 5 minutes in a swinging bucket rotor. Carefully remove and discard the supernatant.
- 13. Repeat steps 11 and 12 once, for a total of 2 washes.
- 14. After removing the second wash, resuspend the cell pellet in 100 µL 1X Nuclease Digest Buffer (freshly prepared, see Before You Begin, page 12).
- 15. Add 2.5 µL of MNase Enzyme Mix. Pipet up and down to fully mix.
- 16. Incubate the tube at 22°C for exactly 15 minutes in an agitating thermal mixer set at 1,250 rpm. If you are working with a large number of samples, stagger the start of the digestion for each sample by 20 seconds then stop after corresponding 15 minutes.
- 17. Stop the reaction by adding 10 μL of 0.5 M EGTA. Pipet up and down to fully mix.

# 1. 2 RIPA Cell Lysis

#### Follow the steps below for RIPA Cell Lysis:

1. Add to the sample tube 87.5  $\mu$ L of a master mix containing the following reagents:

| Reagent                 | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final    |
|-------------------------|---------------------|-----------|---|-------------|---|----------|
| UltraPure Water         | 58.5 μL             | 64.35 µL  | X | 8           | = | 514.8 μL |
| • 10X RIPA              | 20 μL               | 22 μL     | X | 8           | = | 176 µL   |
| 25X Protease Inhibitors | 8 μL                | 8.8 µL    | Χ | 8           | = | 70.4 µL  |
| • 20% SDS               | 1μL                 | 1.1 µL    | Χ | 8           | = | 8.8 μL   |
| Total                   | 87.5 μL             |           |   |             |   |          |

- 2. Vortex the tube to mix three times for 5 seconds each.
- 3. Rotate the tube at room temperature for 15 minutes.
- 4. Spin the tube at 16,000 x g for 2 minutes.
- 5. Transfer the SUPERNATANT (clarified lysate) to a new 1.5 mL tube. This lysate contains the digested chromatin.
- 6. Continue to Stage 2: Lysate QC, page 16.

# Option B: If starting the assay with 10 x 10<sup>6</sup> cells

## 1.1 Crosslinking and Digestion

#### ■ NOTES

- >> 10 x 10<sup>6</sup> cells are needed per HiChIP reaction.
- >> Pre-freezing the cells is required to get an optimal digestion profile.
- The cell pellet should be frozen at -80°C for at least 30 minutes (step 4). You can keep the cells frozen at -80°C for longer provided they are not subjected to freeze-thaw.
- > All crosslinking reactions (steps 5 12) should be carried out at room temperature.

## Follow the steps below for Crosslinking and Digestion:

- 1. Harvest the cells, wash with 1X PBS and count.
- 2. Aliquot 10 x 10<sup>6</sup> cells into a 1.5 mL tube.
- 3. Spin the  $10 \times 10^6$  cell aliquot at  $500 \times g$  for 5 minutes in a swinging bucket rotor. Carefully discard the supernatant.
- 4. Freeze the cell pellet by placing it at -80°C for at least 30 minutes.
- 5. Thaw your cell pellet quickly at room temperature then resuspend the pellet in 1 mL of 1X PBS: first add 200  $\mu$ L of 1X PBS using a 200  $\mu$ L pipette and pipet to break up clumps then add the remaining 800  $\mu$ L. Pipet up and down to fully resuspend the pellet.
- 6. Add 10  $\mu$ L of 0.3 M DSG. Pipet up and down to mix.
- 7. Rotate the tube for 10 minutes at room temperature. Cells should not settle.
- 8. Add 27 µL of 37% formaldehyde.
- 9. Rotate the tube for 10 minutes at room temperature. Cells should not settle.
- 10. Spin the tube at  $500 \times g$  for 5 minutes in a swinging bucket rotor. Carefully discard the supernatant. Use caution, the pellet might be loose.
- 11. Wash the pellet with a total of 1 mL 1X Wash Buffer: first add 200  $\mu$ L of 1X Wash Buffer using a 200 $\mu$ L pipette and pipet to break up clumps, then add the remaining 800  $\mu$ L. Pipet up and down to fully resuspend the pellet.
- 12. Spin the tube at 500 x g for 5 minutes in a swinging bucket rotor. Carefully discard the supernatant.
- 13. Repeat steps 11 and 12 once, for a total of 2 washes.
- 14. After removing the second wash, resuspend the cell pellet in 100 μL 1X Nuclease Digest Buffer (freshly prepared, see Before You Begin, page 12).
- 15. Add 5 µL of MNase Enzyme Mix. Pipet up and down to fully mix.
- 16. Incubate the tube at 22°C for exactly 15 minutes in an agitating thermal mixer set at 1,250 rpm. If you are working with a large number of samples, stagger the start of the digestion for each sample by 20 seconds then stop after corresponding 15 minutes.
- 17. Stop the reaction by adding 10  $\mu$ L of  $\odot$  0.5 M EGTA. Pipet up and down to fully mix.

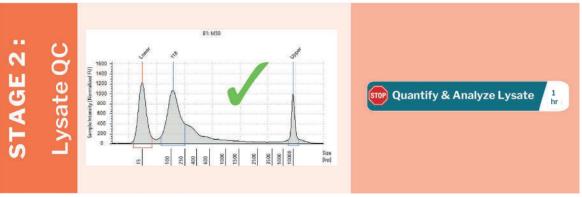
# 1.2 RIPA Cell Lysis

## Follow the steps below for RIPA Cell Lysis:

1. Add to the sample tube 85  $\mu$ L of a master mix containing the following reagents:

| Reagent                 | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final    |
|-------------------------|---------------------|-----------|---|-------------|---|----------|
| UltraPure Water         | 56 µL               | 61.6 µL   | X | 8           | = | 492.8 µL |
| • 10X RIPA              | 20 μL               | 22 μL     | X | 8           | = | 176 µL   |
| 25X Protease Inhibitors | 8 μL                | 8.8 µL    | Χ | 8           | = | 70.4 µL  |
| • 20% SDS               | 1 μL                | 1.1 µL    | X | 8           | = | 8.8 µL   |
| Total                   | 85 µL               |           |   |             |   |          |

- 2. Vortex the tube to mix three times for 5 seconds each.
- 3. Rotate the tube at room temperature for 15 minutes.
- 4. Spin the tube at 16,000 x g for 2 minutes.
- 5. Transfer the **SUPERNATANT** (clarified lysate) to a new 1.5 mL tube. This lysate contains the digested chromatin.
- 6. Continue to Stage 2: Lysate QC, page 16.


# Stage 2: Lysate QC

#### As you prepare for Stage 1, keep the following in mind:

- >> The Lysate QC stage takes ~ 1 hour.
- » This stage has 2 objectives:
  - » Quantify the clarified lysate.
  - >> Confirm that the chromatin was properly digested.
- The protocol below is written for the TapeStation; however, it is also compatible with the Bioanalyzer System and Fragment Analyzer. Please refer to the table below for the recommended kits for each system.

| System             | Recommended Kits       |
|--------------------|------------------------|
| TapeStation        | HS D5000               |
| Bioanalyzer System | HS DNA                 |
| Fragment Analyzer  | DNF-488 HS Genomic DNA |

Figure 2. Stage 2: Lysate QC



## Before You Begin

- >> Prepare fresh 80% ethanol for DNA purification with SPRIselect beads for optimal results. Fresh preparations of 80% ethanol will also be used in the remaining stages, 5 and 6. You need a minimum of 1.5 mL for all these stages.
- >> Program the thermal mixer as follows:

| Temperature | Time       |
|-------------|------------|
| 78°C        | 10 minutes |
| 25°C        | Hold       |

The Crosslink Reversal Buffer might have precipitated in storage. Incubate at 37°C for 15 minutes or until the precipitate is no longer visible. Vortex to mix prior to use.

## Follow the steps below for Lysate QC:

1. Transfer X µL of the clarified lysate (see table below) to a new 1.5 mL tube labeled QC.

| Cell Input Amount          | Clarified Lysate Volume (X) To Use For QC |
|----------------------------|-------------------------------------------|
| 1×10 <sup>6</sup> cells    | 10 μL                                     |
| $5 \times 10^6$ cells      | 2.5 μL                                    |
| 10 x 10 <sup>6</sup> cells | 2.5 μL                                    |

NOTE Store the remainder of the lysate on ice. This is the lysate you will be using in Stage 3. If you are not going to proceed with Stage 3 on the same day, store the remainder of the lysate at -80°C.

2. Add to the QC tube 51.5 µL of a master mix containing the following reagents in the order listed:

| Reagent                        | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final   |
|--------------------------------|---------------------|-----------|---|-------------|---|---------|
| Crosslink Reversal Buffer      | 50 µL               | 55 µL     | X | 8           | = | 440 μL  |
| <ul><li>Proteinase K</li></ul> | 1.5 µL              | 1.7 µL    | X | 8           | = | 13.6 µL |
| Total                          | 51.5 μL             |           |   |             |   |         |

3. Pipet up and down to fully mix. Incubate the QC tube in an agitating thermal mixer set at 1,250 rpm as follows:

| Temperature | Time       |
|-------------|------------|
| 78°C        | 10 minutes |
| 25°C        | Hold       |

- 4. Vortex the SPRIselect beads thoroughly (>30 seconds) to resuspend. Add 90 μL of resuspended SPRIselect beads to the 1.5 mL tube containing your sample.
- 5. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 6. Incubate the tube at room temperature, off the magnetic rack, for 10 minutes.
- 7. Quick spin the tube and place it in the magnetic rack for 5 minutes. Discard the supernatant.
- 8. Leave the tube in the magnetic rack and wash the beads twice with 200  $\mu$ L fresh 80% ethanol. Do not resuspend the beads for these washes. Add the ethanol, wait for 1 minute then discard the ethanol supernatant.
- 9. After the last wash, quick spin the tube and place it in the magnetic rack for 1 minute. Use a 10  $\mu$ L pipet tip to remove traces of ethanol.
- 10. Air dry the beads in the magnetic rack for 5 minutes until no residual ethanol remains. Do not over dry the beads.
- $\Box$ . Off the magnetic rack, resuspend the beads in 10 µL TE Buffer pH 8.0.

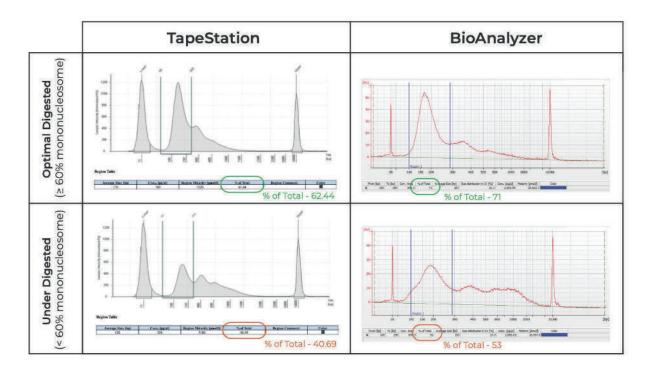
- 12. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 13. Incubate at room temperature, off the magnetic rack, for 5 minutes.
- 14. Quick spin the tube and place it in the magnetic rack for 1 minute (or until the solution looks clear).
- 15. Transfer 8 μL of the SUPERNATANT (purified DNA) to a new tube. This new tube contains your purified QC DNA. Discard the beads.
- 16. Quantify 5  $\mu$ L of your purified QC DNA with a Qubit® Fluorometer and Qubit® dsDNA HS Kit. As a reference, we typically recover approximately 250 ng, 1,500 ng, and 3,000 ng from  $1 \times 10^6$ ,  $5 \times 10^6$ , and  $10 \times 10^6$  GM12878 cells, respectively.
  - Based on the Qubit concentration, your total clarified lysate amount (ng can be calculated as follows:

#### If starting with $1 \times 10^6$ cell input:

Total Clarified Lysate (ng) = Qubit reading ng/μL x 10 μL (elution volume) x 20 (dilution factor)

#### If starting with $5 \times 10^6$ or $10 \times 10^6$ cell input:

ightharpoonup Total Clarified Lysate (ng) = Qubit reading ng/ $\mu$ L x 10  $\mu$ L (elution volume) x 80 (dilution factor)

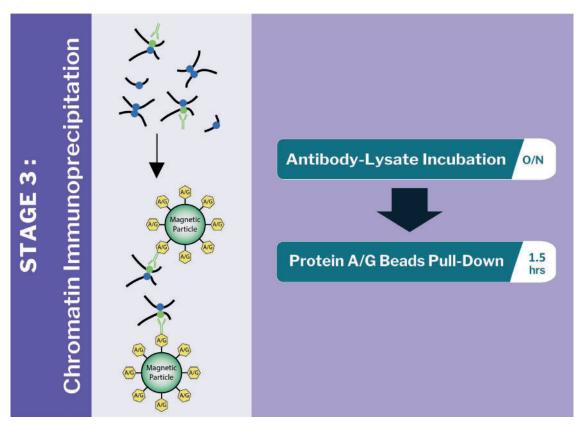

| NOTE If the clarified lysate yield is less than the recommended input for HiChIP  |
|-----------------------------------------------------------------------------------|
| with your antibody of interest (see Things to Consider Before You Start, page 9), |
| there are 2 options for how to proceed:                                           |

**Option 1:** After completing Stage 2 and confirming that the chromatin is optimally digested, freeze the lysate at -80°C. To reach the recommended clarified lysate amount, prepare additional lysate (run Stage 1 with a new cell aliquot), assess the digestion profile (Stage 2), and combine the lysates that are optimally digested before incubating with the antibody (Stage 3).

**Option 2:** If you still wish to proceed with less than the recommended lysate amount, please note that the library complexity will be reduced (i.e. the library will have a high duplication rate) and you may get poor ChIP enrichment

- 17. Check the fragment size distribution of your purified QC sample on a TapeStation HS D5000 ScreenTape. Make sure your sample is diluted to 1 ng/µL to avoid overloading the tape which results in a misrepresentation of the fragment size distribution.
  - The digestion profile should contain ≥ 60% mononucleosomes: the first DNA peak, typically in the size range of 50 300 bp for the TapeStation, should account for ≥ 60% of total DNA (Figure 3). The size range of the first peak may vary for other analytical instruments such as Bioanalyzer and Fragment Analyzer. If the digestion profile contains ≥ 60% mononucleosomes, proceed to Stage 3: Chromatin Immunoprecipitation, page 20.
  - If the digestion profile contains < 60% mononucleosomes, the chromatin is under-digested (Figure 3). When the chromatin is under-digested, the library complexity is lower (i.e. higher duplication rate). If you wish to proceed with the under-digested lysate, you may need additional libraries to support the sequencing depth needed for your application.</p>
    - Alternatively, you can prepare a new lysate by re-running Stage 1 with a new cell aliquot, and increasing the MNase volume to achieve a profile with  $\geq$  60% mononucleosomes. If you need help with digestion optimization, please contact support@cantatabio.com.

Figure 3. Different MNase digestion profiles, as analyzed on HS D5000 ScreenTape



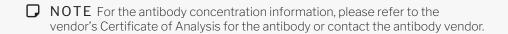

# Stage 3: Chromatin Immunoprecipitation

As you prepare for Stage 3, keep the following in mind:

- >> Follow best practices when working with beads (see Good Practices, page 8).
- >> The amount of antibody to add to the lysate is dependent on the antibody of interest.

Figure 4. Stage 3: Chromatin Immunoprecipitation




## Before You Begin

Dilute ● 10X RIPA to 1X with UltraPure Water. Store at room temperature. 1X RIPA is stable at room temperature for 2 months. You need ~4 mL of 1X RIPA per sample.

# 3.1 Antibody-Lysate Incubation

## Follow the steps below for Antibody-Lysate Incubation:

1. Determine the amount of lysate to use for your antibody of interest (see table below for Dovetail validated antibodies).



| Antibody | Supplier        | Part<br>Number | Recommended amount<br>(ng or µL) of antibody  | Recommended amount (ng) of chromatin (clarified lysate) input |
|----------|-----------------|----------------|-----------------------------------------------|---------------------------------------------------------------|
| IgG      | Cell Signaling  | 2729           | Equivalent amount as the antibody of interest | Equivalent amount as the antibody of interest                 |
| CTCF     | Cell Signaling  | 3418           | 500 ng                                        | 1,000 - 1,500                                                 |
| H3K4ac   | Active Motif    | 39381          | 7.5 µL                                        | 1,000 - 1,500                                                 |
| H3K4me3  | Cell Signaling  | 9751           | 1,250 ng                                      | 1,000 - 1,500                                                 |
| H3K14ac  | Cell Signaling  | 7627           | 4,000 ng                                      | 1,000 - 1,500                                                 |
| H3K27ac  | Cell Signaling  | 8173           | 300 ng                                        | 1,000 - 1,500                                                 |
| H3K27ac  | Millipore Sigma | MABE647        | 200 ng                                        | 1,000 - 1,500                                                 |
| H3K27me3 | Cell Signaling  | 9733           | 1,250 ng                                      | 1,000 - 1,500                                                 |
| H3K36me3 | Cell Signaling  | 4909           | 1,250 ng                                      | 1,000 - 1,500                                                 |
| Polli    | Abcam           | ab26721        | 20,000 ng                                     | 1,000 - 1,500                                                 |
| Klf4     | Abcam           | ab106629       | 20,000 ng                                     | 10,000                                                        |
| Nanog    | Abcam           | ab21624        | 5,000 ng                                      | 10,000                                                        |
| Oct4     | Cell Signaling  | 2890           | 25 μL                                         | 10,000                                                        |
| Sox2     | Cell Signaling  | 23064          | 500 ng                                        | 10,000                                                        |

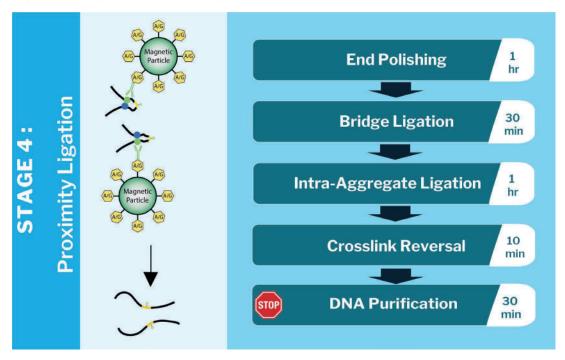
2. Place the appropriate amount of lysate into a new 1.5 mL tube.

## ■ NOTES

- If the amount of lysate is < 200 μL, bring the volume up to 200 μL with 1X RIPA + 25X Protease Inhibitors. This ensures you have sufficient volume for rotation with the antibody. For example, if the lysate amount is 100 μL, bring it up to 200 μL by adding 96 μL of 1X RIPA and 4 μL of 25X Protease Inhibitors.
- If multiple cell aliquots of the same sample were processed to reach the required clarified lysate amount, combine the lysates from these preparations at this step prior to incubating with the antibody.
- 3. Add the recommended amount of antibody (see table above) to the lysate in the 1.5 mL tube.
- 4. Invert to mix then rotate at 4°C overnight (at least 12 hours).

#### 3.2 Protein A/G Beads Pull-down

#### Follow the steps below for Protein A/G Beads Pull-down:


- 1. Equilibrate the Protein A/G beads to room temperature.
- 2. Vortex the Protein A/G beads thoroughly (> 30 seconds) to resuspend the beads.
- 3. Transfer 25 µL of resuspended Protein A/G beads to a new 1.5 mL tube.
- 4. Place the tube in the magnetic rack for 1 minute. Discard the supernatant.
- 5. Remove the tube from the magnetic rack and wash the beads with 200 µL 1X RIPA. Pipet up and down to resuspend the beads and place the tube in the magnetic rack for 1 minute or until the solution looks clear. Discard the supernatant.
- 6. Repeat step 5 once, for a total of 2 washes.
- 7. After the last wash has been aspirated, remove the tube from the magnetic rack and resuspend the beads in 50 µL 1X RIPA.
- 8. Quick spin your antibody-lysate complex that was incubated overnight (see step 4 in 3.1 Antibody-Lysate Incubation, page 21.) and add it to the tube containing the resuspended beads. Gently pipet up and down to fully mix, taking care to avoid creating bubbles.
- 9. Rotate at room temperature for 1 hour.
- 10. Quick spin the tube and place it in the magnetic rack for 1 minute or until the solution looks clear. Discard the supernatant.
- 11. Remove the tube from the magnetic rack and wash the beads with 1 mL 1X RIPA: pipet up and down to resuspend the beads, quick spin and place the tube in the magnetic rack for 2 minutes. Discard the supernatant.
- 12. Repeat step 11 twice, for a total of 3 washes.
- 13. Remove the tube from the magnetic rack and wash the beads with 1 mL 1X Wash Buffer: gently pipet up and down to resuspend the beads (taking care to avoid creating bubbles), quick spin and place the tube in the magnetic rack for 2 minutes. Discard the supernatant.
- 14. Repeat step 13 once, for a total of 2 washes.
- 15. Remove the tube from the magnetic rack and wash the beads with 1 mL 1X Wash Buffer: pipet up and down to resuspend the beads (gently, taking care to avoid creating bubbles), quick spin and place the tube in the magnetic rack. **Do not remove and discard the supernatant at this step yet.** Keep the tube in the magnetic rack and the beads in buffer to ensure they do not dry out while you prepare for the next reaction.
- 16. Continue to Stage 4: Proximity Ligation, page 23.

# Stage 4: Proximity Ligation

As you prepare for Stage 4, keep the following in mind:

- >> Proximity ligation takes ~ 4 hours.
- >> Follow best practices when working with beads (see Good Practices, page 8).

Figure 5. Stage 4: Proximity Ligation



# Before You Begin

- >> The Crosslink Reversal Buffer might have precipitated in storage. Incubate at 50°C for 15 minutes or until the precipitate is no longer visible. Vortex to mix prior to use.
- ➤ Thaw End Polishing Buffer, 5X Bridge Ligation Buffer, Bridge, and Intra-Aggregate Ligation Buffer at room temperature. Leave on ice once thawed. Vortex to mix prior to use.

# 4.1 End Polishing

## Follow the steps below for End Polishing:

1. Aspirate and discard the supernatant from step 15 in <u>3.2 Protein A/G Beads Pull-down, page 22</u>. Remove the tube from the magnetic rack and add to the beads 53 µL of a master mix containing the following reagents:

| Reagent                                      | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final   |
|----------------------------------------------|---------------------|-----------|---|-------------|---|---------|
| <ul> <li>End Polishing Buffer</li> </ul>     | 50 μL               | 55 µL     | X | 8           | = | 440 µL  |
| <ul> <li>End Polishing Enzyme Mix</li> </ul> | 3 μL                | 3.3 µL    | X | 8           | = | 26.4 μL |
| Total                                        | 53 μL               |           |   |             |   |         |

- 2. Pipet up and down to fully mix then transfer the sample to a **new 1.5 mL tube**.
- 3. Incubate in an agitating thermal mixer set at 1,250 rpm as follows:

| Temperature | Time       |
|-------------|------------|
| 22°C        | 30 minutes |
| 65°C        | 30 minutes |

- 4. Allow the tube to reach room temperature then quick spin, and place it in the magnetic rack for 1 minute (or until the solution looks clear). Discard the supernatant.
- 5. Remove the tube from the magnetic rack and wash the beads once with 150 µL 1X Wash Buffer. Pipet up and down to resuspend the beads, place the tube in the magnetic rack. **Do not remove and discard the supernatant at this step yet.** Keep the tube in the magnetic rack and the beads in buffer to ensure they do not dry out while you prepare for the next reaction.

# 4.2 Bridge Ligation

#### Follow the steps below for Bridge Ligation:

1. Prepare and place on ice fresh 50 µL Bridge Ligation Mix by mixing the following reagents:

| Reagent                                       | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final  |
|-----------------------------------------------|---------------------|-----------|---|-------------|---|--------|
| UltraPure Water                               | 35 µL               | 38.5 µL   | X | 8           | = | 308 µL |
| <ul> <li>5X Bridge Ligation Buffer</li> </ul> | 10 μL               | 11 µL     | X | 8           | = | 88 µL  |
| <ul><li>Bridge</li></ul>                      | 5 μL                | 5.5 µL    | Χ | 8           | = | 44 µL  |
| Total                                         | 50 μL               |           |   |             |   |        |

2. Aspirate and discard the supernatant from step 5 in <u>4.1 End Polishing</u>, page 24. Remove the tube from the magnetic rack and add to the beads:

| Reagent             | Volume Per Reaction |
|---------------------|---------------------|
| Bridge Ligation Mix | 50 μL               |
| Bridge Ligase       | 1μL                 |
| Total               | 51 μL               |

- 3. Pipet up and down to fully mix. Incubate at 22°C for 30 minutes in an agitating thermal mixer set at 1,250 rpm.
- 4. Quick spin the tube, then place it in the magnetic rack for 1 minute (or until the solution looks clear). Discard the supernatant.
- 5. Remove the tube from the magnetic rack and wash the beads once with 150 μL 1X Wash Buffer. Pipet up and down to resuspend the beads, place the tube in the magnetic rack for 1 minute and discard the supernatant.

# 4.3 Intra-Aggregate Ligation

#### Follow the steps below for Intra-Aggregate Ligation:

1. Remove the tube from the magnetic rack and add to the beads 52 µL of a master mix containing the following reagents:

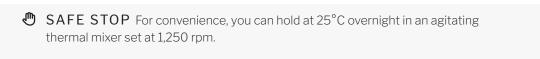
| Reagent                             | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final   |
|-------------------------------------|---------------------|-----------|---|-------------|---|---------|
| Intra-Aggregate Ligation Buffer     | 50 μL               | 55 µL     | X | 8           | = | 440 µL  |
| Intra-Aggregate Ligation Enzyme Mix | 2 μL                | 2.2 µL    | Χ | 8           | = | 17.6 μL |
| Total                               | 52 μL               |           |   |             |   |         |

2. Pipet up and down to fully mix. Incubate at 22°C for 1 hour in an agitating thermal mixer set at 1,250 rpm.



3. Quick spin the tube, then place it in the magnetic rack for 1 minute (or until the solution looks clear). Discard the supernatant.

#### 4.4 Crosslink Reversal


#### Follow the steps below for Crosslink Reversal:

1. Remove the tube from the magnetic rack and add to the beads 51.5 µL of a master mix containing the following reagents in the order listed:

| Reagent                   | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final   |
|---------------------------|---------------------|-----------|---|-------------|---|---------|
| Crosslink Reversal Buffer | 50 μL               | 55 µL     | X | 8           | = | 440 µL  |
| Proteinase K              | 1.5 µL              | 1.65 µL   | X | 8           | = | 13.2 μL |
| Total                     | 51.5 μL             |           |   |             |   |         |

2. Pipet up and down to fully mix. Incubate in an agitating thermal mixer set at 1,250 rpm as follows:

| Temperature | Time       |
|-------------|------------|
| 78°C        | 10 minutes |
| 25°C        | Hold       |

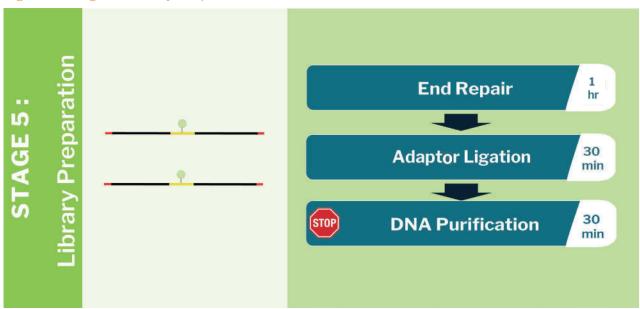


3. Place the tube in the magnetic rack for 1 minute. Transfer 50 µL of the **SUPERNATANT** to a new 1.5 mL tube. Discard the beads.

#### 4.5 DNA Purification

#### Follow the steps below for DNA Purification:

- 1. Vortex the SPRIselect beads thoroughly (>30 seconds) to resuspend.
- 2. Add 90 µL of resuspended SPRIselect beads to the 1.5 mL tube containing your sample.
- 3. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 4. Incubate the tube at room temperature, off the magnetic rack, for 10 minutes.
- 5. Quick spin the tube and place it in the magnetic rack for 5 minutes. Discard the supernatant.
- 6. Leave the tube in the magnetic rack and wash the beads **twice** with 200 µL **fresh** 80% ethanol. Do not resuspend the beads for these washes. Add the ethanol, wait for 1 minute then discard the ethanol supernatant.
- 7. After the last wash, quick spin the tube and place it in the magnetic rack for 1 minute. Use a  $10~\mu L$  pipet tip to remove traces of ethanol
- 8. Air dry the beads in the magnetic rack for 5 minutes until no residual ethanol remains. **Do not over dry the** beads.
- 9. Off the magnetic rack, resuspend the beads in 57 µL TE Buffer pH 8.0.
- 10. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 11. Incubate at room temperature, off the magnetic rack, for 5 minutes.
- 12. Quick spin the tube and place it in the magnetic rack for 1 minute (or until the solution looks clear).
- 13. Transfer 55 µL of the SUPERNATANT (purified DNA) to a new tube. Discard the beads.


- 14. Quantify  $5 \mu L$  of your purified DNA using a Qubit Fluorometer and Qubit dsDNA HS Kit. The amount of DNA recovered is dependent on the antibody used, and in some cases, may be below the detection limit.
  - NOTE The amount of DNA recovered after purification determines the adaptor dilution during library preparation (Stage 5) and number of PCR cycles (Stage 6). This purified DNA will go into library preparation and will also be referred to as DNA input.
  - SAFE STOP Purified DNA sample can be stored at -20°C for up to 6 months.

# Stage 5: Library Preparation

#### As you prepare for Stage 5, keep the following in mind:

- >> The library preparation protocol does not require fragmentation.
- >> The library preparation protocol takes ~ 2 hours.
- » Follow best practices when working with beads (see Good Practices, page 8).

Figure 6. Stage 5: Library Preparation



## Before You Begin

- >> The End Repair Buffer may have precipitated in storage. Incubate for at least 10 minutes at 37°C until there is no visible precipitate.
- >> Thaw Stubby Adaptor at room temperature. Vortex to mix prior to use.

# 5.1 End Repair

## Follow the steps below for End Repair:

- 1. Place the 50 µL of purified DNA input in a 0.2 mL PCR tube.
- 2. Add to the PCR tube 10  $\mu$ L of a master mix containing the following reagents:

| Reagent               | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final   |
|-----------------------|---------------------|-----------|---|-------------|---|---------|
| End Repair Buffer     | 7 μL                | 7.7 µL    | X | 8           | = | 61.6 µL |
| End Repair Enzyme Mix | 3 μL                | 3.3 µL    | X | 8           | = | 26.4 μL |
| Total                 | 10 μL               |           |   |             |   |         |

- 3. Pipet up and down to fully mix. Quick spin the tube.
- 4. Place in a thermal cycler, with the heated lid set to  $\geq 75$ °C, and run the following program:

| Temperature | Time       |
|-------------|------------|
| 20°C        | 30 minutes |
| 65°C        | 30 minutes |
| 12°C        | Hold       |

# 5.2 Adaptor Ligation

## Follow the steps below for Adaptor Ligation:

1. Add to the PCR tube containing the end-repaired sample the following reagents:

| Reagent             | Volume Per Reaction |
|---------------------|---------------------|
| Stubby Adaptor      | 2.5 µL              |
| Ligation Buffer     | 25 μL               |
| Ligation Enzyme Mix | 5 μL                |
| Total               | 32.5 μL             |

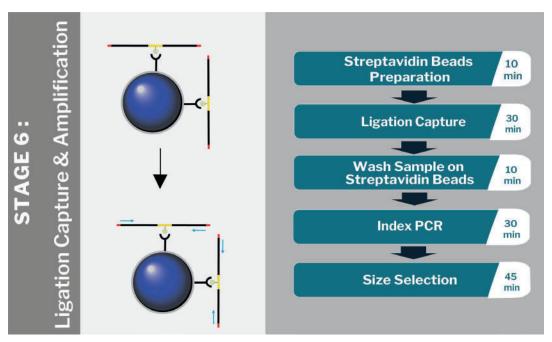


- 2. Pipet up and down to fully mix. Quick spin the tube.
- 3. Incubate at 20°C for 15 minutes in a thermal cycler with the heated lid off. Hold at 12°C.

### 5.3 DNA Purification

## Follow the steps below for DNA Purification:

- 1. Vortex the SPRIselect beads thoroughly (>30 seconds) to resuspend.
- 2. Add 85 µL of resuspended SPRIselect beads to the PCR tube containing the adaptor-ligated sample.
- 3. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 4. Incubate the tube at room temperature, off the magnetic rack, for 10 minutes.
- 5. Quick spin the tube and place it in the magnetic rack for 5 minutes. Discard the supernatant.
- 6. Leave the tube in the magnetic rack and wash the beads **twice** with 200 µL **fresh** 80% ethanol. Do not resuspend the beads for these washes. Add the ethanol, wait for 1 minute then discard the ethanol supernatant.
- 7. Quick spin the tube and place it in the magnetic rack for 1 minute. Use a 10 μL pipet tip to remove traces of ethanol.
- 8. Air dry the beads in the magnetic rack for 5 minutes until no residual ethanol remains. **Do not over dry the beads.**
- 9. Off the magnetic rack, resuspend the beads in 22 µL TE Buffer pH 8.0.
- 10. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 11. Incubate at room temperature, off the magnetic rack, for 5 minutes.
- 12. Quick spin the tube and place it in the magnetic rack for 1 minute (or until the solution looks clear).
- 13. Transfer 20 µL of the SUPERNATANT (purified adaptor-ligated DNA) to a new tube. Discard the beads.
  - ⊕


SAFE STOP Purified DNA sample can be stored at -20°C overnight.

# Stage 6: Ligation Capture and Amplification

#### As you prepare for Stage 6, keep the following in mind:

- >> The Ligation Capture and Amplification protocol takes ~ 2 hours.
- >> Follow best practices when working with beads (see Good Practices, page 8).

Figure 7. Stage 6: Ligation Capture and Amplification



#### Before You Begin

- Thaw the index primers and HotStart PCR Ready Mix and keep on ice while in use. Vortex to mix prior to use.
- >> Equilibrate Streptavidin Beads and NWB at room temperature

# 6.1 Streptavidin Beads Preparation

 $igcup {\sf NOTE}$  This step does not involve any DNA sample.

#### Follow the steps below for Ligation Capture and Amplification:

- 1. Vortex the OStreptavidin Beads vial thoroughly (> 30 seconds) to resuspend the beads. Transfer 25 μL of resuspended OStreptavidin beads to a new 1.5 mL tube.
- 2. Place the 1.5 mL tube containing the beads in the magnetic rack for 1 minute (or until the solution looks clear). Discard the supernatant.
- 3. Remove the tube from the magnetic rack and wash the beads with 200 µL of 1X Wash Buffer: pipet up and down to resuspend the beads and place the tube in the magnetic rack for 1 minute (or until the solution looks clear). Discard the supernatant.
- 4. Repeat step 3 once, for a total of 2 washes.
- 5. After the second wash, resuspend the beads in 100 μL NWB. Pipet up and down to fully mix.
- 6. Transfer to a 0.2 mL PCR tube.

# 6.2 Ligation Capture

#### Follow the steps below for Ligation Capture:

- 1. Transfer the 20 μL of purified adaptor-ligated DNA (from step 13 in <u>5.3 DNA Purification, page 31</u>) to the 0.2 mL tube containing the Streptavidin beads resuspended in 100 μL of NWB.
- 2. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 3. Incubate at 25°C for 30 minutes in an agitating thermal mixer set at 1,250 rpm (or on the bench with no shaking, if an agitating thermal mixer for 0.2 mL tubes is not available).

# 6.3 Wash Sample on Streptavidin Beads

NOTE For each of the washes below, remove the tube from the magnetic rack, add the indicated buffer to the beads, pipet up and down to resuspend the beads, place the tube in the magnetic rack for 1 minute (or until the solution looks clear), and discard the supernatant. Remove all of the supernatant between each wash; residual supernatant can interfere with the downstream PCR.

## Follow the steps below for Wash Sample on Streptavidin Beads:

- 1. Quick spin the tube and place it in the magnetic rack for 1 minute. Discard the supernatant.
- 2. Wash the beads twice with 200 µL NWB.
- 3. Wash the beads twice with 200 µL 1X Wash Buffer.

## 6.4 Index PCR

NOTE Not all PCR enzymes and master mixes are compatible for amplification in the presence of Streptavidin beads. Please use the HotStart PCR Ready Mix supplied in your Dovetail Kit. (Box 2).

## Follow the steps below for Index PCR:

1. After the last wash, remove the tube from the magnetic rack and add to the beads 45 µL of a master mix containing the following reagents:

| Reagent                | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final  |
|------------------------|---------------------|-----------|---|-------------|---|--------|
| UltraPure Water        | 15 μL               | 16.5 µL   | X | 8           | = | 132 μL |
| HotStart PCR Ready Mix | 25 μL               | 27.5 µL   | Χ | 8           | = | 220 μL |
| Total                  | 40 μL               |           |   |             |   |        |

- 2. Add 5 µL of DG i5 Index Primer to the PCR reaction. (see Appendix 2: Index Primers, page 40).
- Add 5 µL of DG i7 Index Primer to the PCR reaction. (see Appendix 2: Index Primers, page 40).
- 4. Pipet up and down to fully mix.
- Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle). Place the tube into the thermal cycler and run the following program:

| Step              | Temperature | Time       | Cycles          |
|-------------------|-------------|------------|-----------------|
| Enzyme Activation | 98°C        | 3 minutes  | 1               |
| Denature          | 98°C        | 20 seconds |                 |
| Anneal            | 65°C        | 20 seconds | See table below |
| Extend            | 72°C        | 30 seconds |                 |
| Extend            | 72°C        | 1 minute   | 1               |
|                   | 12°C        | Hold       | 1               |

| DNA Input (Stage 4.5, Step 14) | Cycles |
|--------------------------------|--------|
| ≥100 ng                        | 12     |
| < 100 ng - 5 ng                | 14     |
| < 5 ng                         | 16     |
| undetected                     | 18     |

#### 6. 5 Size Selection

### Follow the steps below for Size Selection:

- 1. Quick spin the PCR tube and place it in the magnetic rack for 1 minute.
- 2. Transfer 47 µL of the SUPERNATANT to a new 1.5 mL tube. Discard the beads.
- 3. Add 53 µL of TE Buffer pH 8.0 to the 1.5 mL tube to bring the volume of the sample in the tube to 100 µL.
- 4. Vortex the SPRIselect beads thoroughly (>30 seconds) to resuspend.
- 5. Add 50 µL of resuspended SPRIselect beads to the 1.5 mL tube containing your sample.
- 6. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 7. Incubate the tube at room temperature, off the magnetic rack, for 10 minutes.
- 8. Quick spin the tube and place it in the magnetic rack for 5 minutes.
- 9. Transfer 145 µL of the **SUPERNATANT** to a new 1.5 mL tube. Discard the beads.
- 10. Add 30 µL of resuspended SPRIselect beads to the 1.5 mL tube containing your sample.
- 11. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 12. Incubate the tube at room temperature, off the magnetic rack, for 10 minutes.
- 13. Quick spin the tube and place it in the magnetic rack for 5 minutes. Discard the supernatant.
- 14. Leave the tube in the magnetic rack and wash the beads twice with 200  $\mu$ L fresh 80% ethanol. Do not resuspend the beads for these washes. Add the ethanol, wait for 1 minute then discard the ethanol supernatant.
- 15. Quick spin the tube and place it in the magnetic rack for 1 minute. Use a 10 μL pipet tip to remove traces of ethanol.
- 16. Air dry the beads in the magnetic rack for 5 minutes until no residual ethanol remains. **Do not over dry the** beads.
- 17. Off the magnetic rack, resuspend the beads in 30 µL TE Buffer pH 8.0.
- 18. Vortex to mix thoroughly. Quick spin the tube (make sure to spin down only briefly and to stop before the beads start to settle).
- 19. Incubate the tube at room temperature, off the magnetic rack, for 5 minutes.
- 20. Quick spin the tube and place it in the magnetic rack for 1 minute (or until the solution looks clear).
- 21. Transfer 28 µL of the **SUPERNATANT** to a new 1.5 mL tube. The supernatant is your size selected library. Discard the beads.
- 22. Quantify your size selected library using a Qubit Fluorometer and Qubit dsDNA HS Kit.
- 23. Use a TapeStation or Bioanalyzer to verify the size distribution of your size selected library. The size range is expected to be between 350 bp and 1,000 bp (Figure 8).

SAFE STOP The library can be stored at -20°C for up to 6 months.

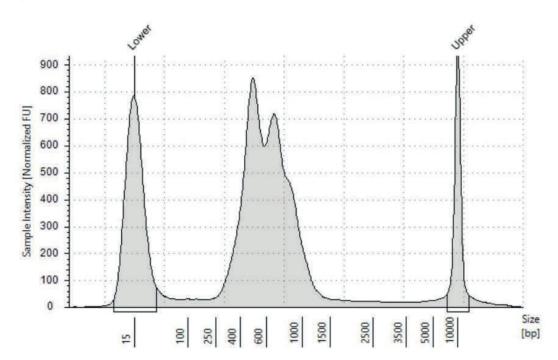



Figure 8. Expected final library profile, as analyzed on HS D5000 ScreenTape.

# Sequencing & QC Analysis

Dovetail® HiChIP MNase libraries are sequenced via Illumina® sequencers in paired-end mode. Each library can be sequenced to ~150 M read pairs. We recommend to shallow sequence the library to run a QC analysis prior to deep sequencing. The QC analysis requires ~20 M read pairs (2 x 150 bp). Cantata Bio provides all kit users access to a QC analysis workflow available on readthedocs: <a href="https://hichip.readthedocs.io/en/latest/">https://hichip.readthedocs.io/en/latest/</a>.

# Appendix 1: Sample Preparation for 1 x 10<sup>6</sup> Cell Input

As you prepare for 1 x 10<sup>6</sup> cell input, keep the following in mind:

>> Sample preparation takes 1.5 hours.

#### Before You Begin

- >> The 10X Wash Buffer and 20% SDS might have precipitated in storage. Incubate these solutions at 50°C for 15 minutes or until the precipitate is no longer visible. Vortex to mix prior to use.
- Dilute 10X Wash Buffer to 1X with UltraPure™ Water. Store at room temperature. 1X Wash Buffer is stable at room temperature for 2 months. You need ~6 mL of 1X Wash Buffer per sample for the entire protocol.
- Prepare 0.3 M DSG in DMSO (anhydrous) by dissolving 1 mg of DSG in 10.22 μL DMSO. DSG is water-insoluble and moisture-sensitive. Prepare immediately before use. Do not store DSG in solution.
- ▶ Prepare 25X Proteinase Inhibitors by dissolving 1 tablet of cOmplete<sup>TM</sup> Protease Inhibitor Cocktail in 2 mL of UltraPure<sup>TM</sup> Water and place on ice. The 25X Proteinase Inhibitors solution is stable at 4°C for 2 weeks.
- Prepare fresh 1X Nuclease Digest Buffer and store at room temperature. 1X Nuclease Digest Buffer is stable for 1 day at room temperature. You need 50 μL of 1X Nuclease Digest Buffer per sample. To prepare 1X Nuclease Digest Buffer (50 μL), mix the following components:

| Reagent                    | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final  |
|----------------------------|---------------------|-----------|---|-------------|---|--------|
| UltraPure Water            | 40 μL               | 44 µL     | X | 8           | = | 352 µL |
| 10X Nuclease Digest Buffer | 5 μL                | 5.5 µL    | X | 8           | = | 44 µL  |
| ■ 100 mM MgCl <sub>2</sub> | 5 μL                | 5.5 µL    | Χ | 8           | = | 44 µL  |
| Total                      | 50 μL               |           |   |             |   |        |

- » Set the thermal mixer at 22°C, shaking at 1,250 rpm.
- >> Thaw 0.5 M EGTA at room temperature. Vortex to mix prior to use.

# Crosslinking and Digestion

#### ■ NOTES

- > 1 x 10<sup>6</sup> cells are needed per HiChIP reaction.
- » Pre-freezing the cells is required to get an optimal digestion profile.
- >> The cell pellet should be frozen at -80°C for at least 30 minutes (step 4). You can keep the cells frozen at -80°C for longer provided they are not subjected to freeze-thaw.
- >> All crosslinking reactions (steps 5 12) should be carried out at room temperature.

#### Follow the steps below for Crosslinking and Digestion:

- 1. Harvest the cells, wash with 1X PBS and count.
- 2. Aliquot 1 x 10<sup>6</sup> cells into a 1.5 mL tube.
- 3. Spin the  $1 \times 10^6$  cell aliquot at  $500 \times g$  for 5 minutes in a swinging bucket rotor. Carefully discard the supernatant.
- 4. Freeze the cell pellet by placing it at -80°C for at least 30 minutes.
- 5. Thaw your cell pellet quickly at room temperature then resuspend the pellet in  $200 \,\mu\text{L}$  of 1X PBS: first add  $50 \,\mu\text{L}$  of 1X PBS and pipet up and down to break up clumps then add the remaining  $150 \,\mu\text{L}$ . Pipet up and down to fully resuspend the pellet.
- 6. Add 2 μL of 0.3 M DSG. Pipet up and down to mix.
- 7. Rotate the tube for 10 minutes at room temperature. Cells should not settle.
- 8. Add 5.4 µL of 37% formaldehyde.
- 9. Rotate the tube for 10 minutes at room temperature. Cells should not settle.
- 10. Spin the tube at 500 x g for 5 minutes in a swinging bucket rotor. Carefully discard the supernatant. Use caution, the pellet might be loose.
- $\Box$  Wash the pellet with 200  $\mu$ L of 1X Wash Buffer, pipet up and down to break up clumps and fully resuspend the pellet.
- 12. Spin the tube at 500 x g for 5 minutes in a swinging bucket rotor. Carefully discard the supernatant.
- 13. Repeat steps 11 and 12 once, for a total of 2 washes.
- 14. After removing the second wash, resuspend the cell pellet in 50 μL 1X Nuclease Digest Buffer (freshly prepared, see <u>Before You Begin, page 37</u>).
- 15. Add 0.5 µL of MNase Enzyme Mix and pipet up and down to fully mix.
- 16. Incubate the tube at 22°C for exactly 15 minutes in an agitating thermal mixer set at 1,250 rpm. If you are working with a large number of samples, stagger the start of the digestion for each sample by 20 seconds then stop after corresponding 15 minutes.
- 17. Stop the reaction by adding 5 µL of 00.5 M EGTA. Pipet up and down to fully mix.

# RIPA Cell Lysis

## Follow the steps below for RIPA Cell Lysis:

1. Add to the sample tube 144.5  $\mu$ L of a master mix containing the following reagents:

| Reagent                 | Volume Per Reaction | 10% Extra |   | # Reactions |   | Final      |
|-------------------------|---------------------|-----------|---|-------------|---|------------|
| UltraPure Water         | 115.5 μL            | 127.1 µL  | X | 8           | = | 1,016.8 µL |
| • 10X RIPA              | 20 μL               | 22 μL     | Χ | 8           | = | 176 µL     |
| 25X Protease Inhibitors | 8 μL                | 8.8 µL    | X | 8           | = | 70.4 μL    |
| • 20% SDS               | 1 μL                | 1.1 µL    | X | 8           | = | 8.8 μL     |
| Total                   | 144.5 μL            |           |   |             |   |            |

- 2. Vortex the tube to mix three times for 5 seconds each.
- 3. Rotate the tube at room temperature for 15 minutes.
- 4. Spin the tube at 16,000 x g for 2 minutes.
- 5. Transfer the **SUPERNATANT** (clarified lysate) to a new 1.5 mL tube. This lysate contains the digested chromatin.
- 6. Continue to Stage 2: Lysate QC, page 16.

# Appendix 2: Index Primers

Dovetail® Primer Module Set 1 includes four i5 index primers and six i7 index primers. **Verify that the indexes selected for pooling have the appropriate color balance for your sequencing instrument.** 

Dovetail® Primer Module Set 1 contains sufficient index primers to support multiplexing up to 24 libraries, where each library is prepared by combining a unique i5 index primer and a unique i7 index primer in steps 2 and 3 of Stage 6.4 Index PCR. For example, 6 libraries can be prepared by setting up 6 individual PCR reactions as follows:

- Library 1: i5 Index Primer 1 and i7 Index Primer 1
- Library 2: i5 Index Primer 1 and i7 Index Primer 2
- Library 3: i5 Index Primer 1 and i7 Index Primer 3
- Library 4: i5 Index Primer 1 and i7 Index Primer 4
- Library 5: i5 Index Primer 1 and i7 Index Primer 5
- Library 6: i5 Index Primer 1 and i7 Index Primer 6

#### Table 7. Index Primer

| i5 Index Name | Bases in Adapter | Bases for Sample Sheet in Forward<br>Orientation | Bases for Sample<br>Sheet in Reverse<br>Complement<br>Orientation |
|---------------|------------------|--------------------------------------------------|-------------------------------------------------------------------|
| DG i5 Index 1 | ATATGCGC         | ATATGCGC                                         | GCGCATAT                                                          |
| DG i5 Index 2 | TGGTACAG         | TGGTACAG                                         | CTGTACCA                                                          |
| DG i5 Index 3 | AACCGTTC         | AACCGTTC                                         | GAACGGTT                                                          |
| DG i5 Index 4 | TAACCGGT         | TAACCGGT                                         | ACCGGTTA                                                          |

| i7 Index Name | Bases in Adapter | Bases for Sample Sheet |
|---------------|------------------|------------------------|
| DG i7 Index 1 | ACGATCAG         | CTGATCGT               |
| DG i7 Index 2 | TCGAGAGT         | ACTCTCGA               |
| DG i7 Index 3 | CTAGCTCA         | TGAGCTAG               |
| DG i7 Index 4 | ATCGTCTC         | GAGACGAT               |
| DG i7 Index 5 | TCGACAAG         | CTTGTCGA               |
| DG i7 Index 6 | CCTTGGAA         | TTCCAAGG               |